1.5 T vs 3.0 T
Citation, DOI, disclosures and article data
At the time the article was created Frank Gaillard had no recorded disclosures.
View Frank Gaillard's current disclosuresAt the time the article was last revised Dr jith Tho had no recorded disclosures.
View Dr jith Tho's current disclosures- 1.5T versus 3.0T
- 1.5T versus 3T
- 1.5 T versus 3 T
- 1.5 tesla versus 3.0 tesla
- 1.5 tesla versus 3 tesla
- 1.5 tesla vs 3.0 tesla MRI systems
- 1.5T vs 3.0T
- 1.5T vs 3T
Comparing 1.5 T vs 3.0 T (1.5 tesla vs 3.0 tesla) MRI systems identifies several differences; a 3 T system has
- increased signal-to-noise ratio (SNR)
- increased spatial resolution
- increased temporal resolution
- increased specific absorption rate (SAR)
- increased acoustic noise
On this page:
Terminology
It is important to emphasise that in common with standard scientific unit notation, a space must always be inserted between the quantity and the unit symbol; therefore, 1.5 T and 3 T are correct. Conversely, 1.5T and 3T are incorrect, despite the latter usages often being seen in medical media and some radiology reports.
Signal-to-noise ratio
Theoretically, the signal is proportional to the square of the static field strength (B0), whereas noise increases linearly. This implies that, in a perfect system, the signal-to-noise ratio (SNR) of a 3 T system would be twice as good as at 1.5 T. In reality, due to an increase in susceptibility effects in most tissues, the actual improvement is only in the 30-60% range (instead of 100%). With this increased SNR, the spatial resolution and/or acquisition time can be improved, depending on which is more important for the particular case.
Specific absorption rate
The specific absorption rate (SAR) is defined as the amount of radiofrequency energy (joules) deposited in tissues (kg). The limit set by the FDA is an amount that results in an increase of 1-degree centigrade in any tissue 2. SAR is proportional to the static field (B0) squared, meaning that a 3 T system deposits four times as much energy within tissue as a 1.5 T system. Additionally, SAR is proportional to
- pulse duration and length
- pulse number
- slice number
- flip angle
The dependence of SAR on the flip angle results in a relatively large amount of energy deposition for standard spin-echo sequences since they use 90-degree flip angles. As a result, there is an increased use of gradient-echo sequences, which use smaller flip angles. Unfortunately, these latter sequences image T2* and not T2, and are therefore more susceptible to local field artifacts. These problems have largely been overcome with modern units.
Acoustic noise
Rapid gradient switching leads to an increase in the intensity of the acoustic noise, which requires better insulation of both the unit itself and the containing room.
Quiz questions
References
- 1. Salvolini U, Scarabino T. High Field Brain MRI. Springer. (2006) ISBN:3540317759. Read it at Google Books - Find it at Amazon
- 2. www.fda.gov. U.S. Food and Drug Administration. Read relevant article. Accessed on 25/08/2016
- 3. Chavhan GB. MRI Made Easy (for Beginners). Jaypee Brothers Medical Publishers Pvt. Ltd. (2013) ISBN:9351520471. Read it at Google Books - Find it at Amazon
- 3. Hindi health point Read it at Google Books
Incoming Links
- B0
- Thoracic spine protocol (MRI)
- Benign enhancing foramen magnum lesion
- Gadoterate meglumine
- Lumbar spine protocol (MRI)
- Lactate peak
- Magnets (types)
- Metal artifact reduction sequence
- Ultrahigh field MRI
- Prostate cancer
- MR vessel wall imaging
- Pacinian corpuscle
- Posterior pituitary bright spot
- Cervical spine protocol (MRI)
- Tesla (SI unit)
Related articles: Imaging technology
- imaging technology
- imaging physics
- imaging in practice
-
x-rays
- x-ray physics
- x-ray in practice
- x-ray production
- x-ray tube
- filters
- automatic exposure control (AEC)
- beam collimators
- grids
- air gap technique
- cassette
- intensifying screen
- x-ray film
- image intensifier
- digital radiography
- digital image
- mammography
- x-ray artifacts
- radiation units
- radiation safety
- radiation detectors
- fluoroscopy
-
computed tomography (CT)
- CT physics
- CT in practice
- CT technology
- CT image reconstruction
- CT image quality
- CT dose
-
CT contrast media
-
iodinated contrast media
- agents
- water soluble
- water insoluble
- vicarious contrast material excretion
- iodinated contrast media adverse reactions
- agents
- non-iodinated contrast media
-
iodinated contrast media
-
CT artifacts
- patient-based artifacts
- physics-based artifacts
- hardware-based artifacts
- ring artifact
- tube arcing
- out of field artifact
- air bubble artifact
- helical and multichannel artifacts
- CT safety
- history of CT
-
MRI
- MRI physics
- MRI in practice
- MRI hardware
- signal processing
-
MRI pulse sequences (basics | abbreviations | parameters)
- T1 weighted image
- T2 weighted image
- proton density weighted image
- chemical exchange saturation transfer
- CSF flow studies
- diffusion weighted imaging (DWI)
- echo-planar pulse sequences
- fat-suppressed imaging sequences
- gradient echo sequences
- inversion recovery sequences
- metal artifact reduction sequence (MARS)
-
perfusion-weighted imaging
- techniques
- derived values
- saturation recovery sequences
- spin echo sequences
- spiral pulse sequences
- susceptibility-weighted imaging (SWI)
- T1 rho
- MR angiography (and venography)
-
MR spectroscopy (MRS)
- 2-hydroxyglutarate peak: resonates at 2.25 ppm
- alanine peak: resonates at 1.48 ppm
- choline peak: resonates at 3.2 ppm
- citrate peak: resonates at 2.6 ppm
- creatine peak: resonates at 3.0 ppm
- functional MRI (fMRI)
- gamma-aminobutyric acid (GABA) peak: resonates at 2.2-2.4 ppm
- glutamine-glutamate peak: resonates at 2.2-2.4 ppm
- Hunter's angle
- lactate peak: resonates at 1.3 ppm
- lipids peak: resonates at 1.3 ppm
- myoinositol peak: resonates at 3.5 ppm
- MR fingerprinting
- N-acetylaspartate (NAA) peak: resonates at 2.0 ppm
- propylene glycol peak: resonates at 1.13 ppm
-
MRI artifacts
- MRI hardware and room shielding
- MRI software
- patient and physiologic motion
- tissue heterogeneity and foreign bodies
- Fourier transform and Nyquist sampling theorem
- MRI contrast agents
- MRI safety
-
ultrasound
- ultrasound physics
-
transducers
- linear array
- convex array
- phased array
- frame averaging (frame persistence)
- ultrasound image resolution
- imaging modes and display
- pulse-echo imaging
- real-time imaging
-
Doppler imaging
- Doppler effect
- colour Doppler
- power Doppler
- B flow
- colour box
- Doppler angle
- pulse repetition frequency and scale
- wall filter
- colour write priority
- packet size (dwell time)
- peak systolic velocity
- end-diastolic velocity
- resistive index
- pulsatility index
- Reynolds number
- panoramic imaging
- compound imaging
- harmonic imaging
- elastography
- scanning modes
- 2D ultrasound
- 3D ultrasound
- 4D ultrasound
- M-mode
-
ultrasound artifacts
- acoustic shadowing
- acoustic enhancement
- beam width artifact
- reverberation artifact
- ring down artifact
- mirror image artifact
- side lobe artifact
- speckle artifact
- speed displacement artifact
- refraction artifact
- multipath artifact
- anisotropy
- electrical interference artifact
- hardware-related artifacts
- Doppler artifacts
- aliasing
- tissue vibration
- spectral broadening
- blooming
- motion (flash) artifact
- twinkling artifact
- acoustic streaming
- biological effects of ultrasound
- history of ultrasound
-
nuclear medicine
- nuclear medicine physics
- detectors
- tissue to background ratio
-
radiopharmaceuticals
- fundamentals of radiopharmaceuticals
- radiopharmaceutical labelling
- radiopharmaceutical production
- nuclear reactor produced radionuclides
- cyclotron produced radionuclides
- radiation detection
- dosimetry
- specific agents
- carbon-11
- chromium-51
- fluorine agents
- gallium agents
- Ga-67 citrate
- Ga-68
- iodine agents
-
I-123
- I-123 iodide
- I-123 ioflupane (DaTSCAN)
- I-123 ortho-iodohippurate
- I-131
-
MIBG scans
- I-123 MIBG
- I-131 MIBG
-
I-123
- indium agents
- In-111 Octreoscan
- In-111 OncoScint
- In-111 Prostascint
- In-111 oxine labelled WBC
- krypton-81m
- nitrogen-13
- oxygen-15
- phosphorus-32
- selenium-75
-
technetium agents
- Tc-99m DMSA
- Tc-99m DTPA
- Tc-99m DTPA aerosol
- Tc-99m HMPAO
- Tc-99m HMPAO labelled WBC
- Tc-99m MAA
- Tc-99m MAG3
- Tc-99m MDP
- Tc-99m mercaptoacetyltriglycine
- Tc-99m pertechnetate
- Tc-99m labelled RBC
- Tc-99m sestamibi
- Tc-99m sulfur colloid
- Tc-99m sulfur colloid (oral)
- thallium-201 chloride
- xenon agents
- in vivo therapeutic agents
- pharmaceuticals used in nuclear medicine
-
emerging methods in medical imaging
- radiography
- phase-contrast imaging
- CT
- deep-learning reconstruction
- photon counting CT
- virtual non-contrast imaging
- ultrasound
- magnetomotive ultrasound (MMUS)
- superb microvascular imaging
- ultrafast Doppler imaging
- ultrasound localisation microscopy
- MRI
- nuclear medicine
- total body PET system
- immuno-PET
- miscellaneous
- radiography