Air gap technique (general radiography)
Citation, DOI, disclosures and article data
At the time the article was created Ellen Stewart had no recorded disclosures.
View Ellen Stewart's current disclosuresAt the time the article was last revised Daniel J Bell had no financial relationships to ineligible companies to disclose.
View Daniel J Bell's current disclosures- Air-gap technique
The utilization of the air gap technique in general radiography is limited due to the need for equipment facilitation to create the air gap when it is not inherent in the standard technique.
Horizontal-beam lateral hip
There are many different methods of performing the horizontal beam lateral hip projection depending on the patient’s ability to move and the equipment available. Many methods have an air gap present due to the position of the patient and image detector. Due to the thickness of the proximal anatomy, an anti-scatter grid may also be necessary for optimal scatter reduction.
A study from 2016 found that the optimum dose and image quality scenario for the projection phantom study involves using both an anti-scatter grid and a 45 cm air gap 1.
Pelvic radiography
For pelvic radiography, an air gap of 10 cm proved adequate for diagnosis in both the CR and DR systems. The use of the 10 cm air gap technique is found to be sufficient to replace a 10:1 ratio anti-scatter grid, and replacing a grid with an air gap in a DR system could result in a dose reduction of 69.6 to 79.4% 2.
Lateral cervical spine
The standard positioning of the imaged patient, image receptor, and x-ray tube for a lateral cervical spine image includes an inherent air gap created by the distance between the patient's neck and the image receptor which is against their shoulder.
Using an anti-scatter grid despite the inherent air gap can result in a dose increase factor of an average 2.21 when compared to only using the air gap as an anti-scatter method 3.
The use of an anti-scatter grid and filter combination for the lateral cervical spine projection can improve the visualization of C7-T1 vertebral junction. It was found that within the scenarios examined, 49.8% of the images produced were adequate to visualize C7-T1, while 61.1% of the images produced using a grid and filter combination were adequate 4. The increased adequacy with grid and filter use may justify the use of an anti-scatter grid due to the decreased need for further imaging to define the C7-T1 level.
The decision to use either an air gap alone or a grid and air gap combination for scatter reduction should be made on an equipment and patient basis.
References
- 1. Charnley C, England A, Martin A, Taylor S, Benson N, Jones L. An Option for Optimising the Radiographic Technique for Horizontal Beam Lateral (HBL) Hip Radiography when Using Digital X-Ray Equipment. Radiography. 2016;22(2):e137-42. doi:10.1016/j.radi.2016.01.004
- 2. Chan C & Fung K. Dose Optimization in Pelvic Radiography by Air Gap Method on CR and DR Systems – A Phantom Study. Radiography. 2015;21(3):214-23. doi:10.1016/j.radi.2014.11.005
- 3. Bell N, Erskine M, Warren-Forward H. Lateral Cervical Spine Examinations: An Evaluation of Dose for Grid and Non-Grid Techniques. Radiography. 2003;9(1):43-52. doi:10.1016/s1078-8174(02)00078-0
- 4. Goyal N, Rachapalli V, Burns H, Lloyd D. Cervical Spine Imaging in Trauma: Does the Use of Grid and Filter Combination Improve Visualisation of the Cervicothoracic Junction? Radiography. 2011;17(1):39-42. doi:10.1016/j.radi.2010.04.005
Incoming Links
Related articles: Imaging technology
- imaging technology
- imaging physics
- imaging in practice
-
x-rays
- x-ray physics
- x-ray in practice
- x-ray production
- x-ray tube
- filters
- automatic exposure control (AEC)
- beam collimators
- grids
- air gap technique
- cassette
- intensifying screen
- x-ray film
- image intensifier
- digital radiography
- digital image
- mammography
- x-ray artifacts
- radiation units
- radiation safety
- radiation detectors
- fluoroscopy
-
computed tomography (CT)
- CT physics
- CT in practice
- CT technology
- CT image reconstruction
- CT image quality
- CT dose
-
CT contrast media
-
iodinated contrast media
- agents
- water soluble
- water insoluble
- vicarious contrast material excretion
- iodinated contrast media adverse reactions
- agents
- non-iodinated contrast media
-
iodinated contrast media
-
CT artifacts
- patient-based artifacts
- physics-based artifacts
- hardware-based artifacts
- ring artifact
- tube arcing
- out of field artifact
- air bubble artifact
- helical and multichannel artifacts
- CT safety
- history of CT
-
MRI
- MRI physics
- MRI in practice
- MRI hardware
- signal processing
-
MRI pulse sequences (basics | abbreviations | parameters)
- T1 weighted image
- T2 weighted image
- proton density weighted image
- chemical exchange saturation transfer
- CSF flow studies
- diffusion weighted imaging (DWI)
- echo-planar pulse sequences
- fat-suppressed imaging sequences
- gradient echo sequences
- inversion recovery sequences
- metal artifact reduction sequence (MARS)
-
perfusion-weighted imaging
- techniques
- derived values
- saturation recovery sequences
- spin echo sequences
- spiral pulse sequences
- susceptibility-weighted imaging (SWI)
- T1 rho
- MR angiography (and venography)
-
MR spectroscopy (MRS)
- 2-hydroxyglutarate peak: resonates at 2.25 ppm
- alanine peak: resonates at 1.48 ppm
- choline peak: resonates at 3.2 ppm
- citrate peak: resonates at 2.6 ppm
- creatine peak: resonates at 3.0 ppm
- functional MRI (fMRI)
- gamma-aminobutyric acid (GABA) peak: resonates at 2.2-2.4 ppm
- glutamine-glutamate peak: resonates at 2.2-2.4 ppm
- Hunter's angle
- lactate peak: resonates at 1.3 ppm
- lipids peak: resonates at 1.3 ppm
- myoinositol peak: resonates at 3.5 ppm
- MR fingerprinting
- N-acetylaspartate (NAA) peak: resonates at 2.0 ppm
- propylene glycol peak: resonates at 1.13 ppm
-
MRI artifacts
- MRI hardware and room shielding
- MRI software
- patient and physiologic motion
- tissue heterogeneity and foreign bodies
- Fourier transform and Nyquist sampling theorem
- MRI contrast agents
- MRI safety
-
ultrasound
- ultrasound physics
-
transducers
- linear array
- convex array
- phased array
- frame averaging (frame persistence)
- ultrasound image resolution
- imaging modes and display
- pulse-echo imaging
- real-time imaging
-
Doppler imaging
- Doppler effect
- color Doppler
- power Doppler
- B flow
- color box
- Doppler angle
- pulse repetition frequency and scale
- wall filter
- color write priority
- packet size (dwell time)
- peak systolic velocity
- end-diastolic velocity
- resistive index
- pulsatility index
- Reynolds number
- panoramic imaging
- compound imaging
- harmonic imaging
- elastography
- scanning modes
- 2D ultrasound
- 3D ultrasound
- 4D ultrasound
- M-mode
-
ultrasound artifacts
- acoustic shadowing
- acoustic enhancement
- beam width artifact
- reverberation artifact
- ring down artifact
- mirror image artifact
- side lobe artifact
- speckle artifact
- speed displacement artifact
- refraction artifact
- multipath artifact
- anisotropy
- electrical interference artifact
- hardware-related artifacts
- Doppler artifacts
- aliasing
- tissue vibration
- spectral broadening
- blooming
- motion (flash) artifact
- twinkling artifact
- acoustic streaming
- biological effects of ultrasound
- history of ultrasound
-
nuclear medicine
- nuclear medicine physics
- detectors
- tissue to background ratio
-
radiopharmaceuticals
- fundamentals of radiopharmaceuticals
- radiopharmaceutical labeling
- radiopharmaceutical production
- nuclear reactor produced radionuclides
- cyclotron produced radionuclides
- radiation detection
- dosimetry
- specific agents
- carbon-11
- chromium-51
- fluorine agents
- gallium agents
- Ga-67 citrate
- Ga-68
- iodine agents
-
I-123
- I-123 iodide
- I-123 ioflupane (DaTSCAN)
- I-123 ortho-iodohippurate
- I-131
-
MIBG scans
- I-123 MIBG
- I-131 MIBG
-
I-123
- indium agents
- In-111 Octreoscan
- In-111 OncoScint
- In-111 Prostascint
- In-111 oxine labeled WBC
- krypton-81m
- nitrogen-13
- oxygen-15
- phosphorus-32
- selenium-75
-
technetium agents
- Tc-99m DMSA
- Tc-99m DTPA
- Tc-99m DTPA aerosol
- Tc-99m HMPAO
- Tc-99m HMPAO labeled WBC
- Tc-99m MAA
- Tc-99m MAG3
- Tc-99m MDP
- Tc-99m mercaptoacetyltriglycine
- Tc-99m pertechnetate
- Tc-99m labeled RBC
- Tc-99m sestamibi
- Tc-99m sulfur colloid
- Tc-99m sulfur colloid (oral)
- thallium-201 chloride
- xenon agents
- in vivo therapeutic agents
- pharmaceuticals used in nuclear medicine
-
emerging methods in medical imaging
- radiography
- phase-contrast imaging
- CT
- deep-learning reconstruction
- photon counting CT
- virtual non-contrast imaging
- ultrasound
- magnetomotive ultrasound (MMUS)
- superb microvascular imaging
- ultrafast Doppler imaging
- ultrasound localization microscopy
- MRI
- nuclear medicine
- total body PET system
- immuno-PET
- miscellaneous
- radiography