Decision tree (machine learning)
The decision tree model in machine learning is an algorithm that offers choices based on characteristics of the data. It follows 'branch node theory' in which each branch will represent a variable alongside a decision.
Often decision tree models will be expressed in the following rule format:
- IF variable = x AND variable = y THEN outcome = z
There are different types of decision tree model algorithms. Some of these algorithms have been used for radiology image classification and thus appear the radiology literature ( including CART 1 and CHAID 2 ) or radiology related computer science literature ( ID3 3,4). In contrast to many methods of machine learning, decision tree models utilize heuristics and are therefore comprehensible.
While classically visualized by diagrams of connected nodes, decision tree models can be visualized by partitioned graphs or perspective plots.
Related Radiopaedia articles
Artificial intelligence
- artificial intelligence (AI)
- imaging data sets
- computer-aided diagnosis (CAD)
- natural language processing
- machine learning (overview)
- visualizing and understanding neural networks
- common data preparation/preprocessing steps
- DICOM to bitmap conversion
- dimensionality reduction
- scaling
- centering
- normalization
- principal component analysis
- training, testing and validation datasets
- augmentation
- loss function
-
optimization algorithms
- ADAM
- momentum (Nesterov)
- stochastic gradient descent
- mini-batch gradient descent
-
regularisation
- linear and quadratic
- batch normalization
- ensembling
- rule-based expert systems
- glossary
- activation function
- anomaly detection
- automation bias
- backpropagation
- batch size
- computer vision
- concept drift
- cost function
- confusion matrix
- convolution
- cross validation
- curse of dimensionality
- dice similarity coefficient
- dimensionality reduction
- epoch
- explainable artificial intelligence/XAI
- feature extraction
- federated learning
- gradient descent
- ground truth
- hyperparameters
- image registration
- imputation
- iteration
- jaccard index
- linear algebra
- noise reduction
- normalization
- R (Programming language)
- Python (Programming language)
- segmentation
- semi-supervised learning
- synthetic and augmented data
- overfitting
- transfer learning