Intracranial metastatic melanoma

Changed by Maxime St-Amant, 16 Oct 2017

Updates to Article Attributes

Body was changed:

Intracranial metastatic melanoma is the third most common brain metastasis. 

For a broad discussion about the primary tumour or brain metastasis in general, please refer to the articles:

Epidemiology

A population-based study of 169,444 cancer patients from 1973 to 2001 in Detroit revealed that ~7% of patients diagnosed with melanoma subsequently developed intracranial metastasis 2.

Clinical presentantion

These patients can commonly present with headaches, seizures, mental status alterations, ataxia, nausea and vomiting, and visual disturbances. However, 10% of patients may be asymptomatic.

Pathology

Melanoma metastases can be artificially divided into "melanotic" (containing greater than 10% melanotic cells on histopathology) or "amelanotic" (containing less than 10% melanotic cells). In 1995, Isiklar et al. published a study in the AJR where only melanotic metastases provided consistent and reliable MR findings (hyperintense on T1 and hypointense on T2). The MR findings of amelanotic metastases were non-specific. Unfortunately, melanotic metastases made up only 25% of the total cerebral melanoma metastases examined 7.

Radiographic features

Intratumoural haemorrhage is a much more common feature of melanoma metastases in comparison to other brain metastases 5. Other than choriocarcinoma, metastatic melanomas are the most frequent metastases that are complicated by massive haemorrhage 6.

CT

Typically, intracranial melanoma metastases consist of a single or multiple nodules with increased attenuation on CT. Out of a series of 101 patients with cerebral melanoma metastases, 62% were found to have multiple lesions (53% localized bilaterally), and 72% of these lesions had increased attenuation 3. Cystic degeneration and necrosis are rarely seen in these tumours 3,4.

  • NECT: single to multiple nodules of increased attenuation localized to the gray/white matter junction; variable oedema and frequent intratumoural hemorrhage present
  • CECT: nodules typically enhance; dural-based, well enhanced lesions are impossible to differentiate from meningiomas
MRI

The blood products alter the signal on MRI resulting in hyperintensity on T1 and hypointensity on T2 images. However, it should be noted that the melanin pigment have parallel effects on T1 and T2 relaxation times 6. Thus, the signal changes seen on MRI may be due to either melanin or blood products.

  • T1: typicallytypically hyperintense secondary to hemorrhagehaemorrhage or melanin (as above)
  • T2: typically hypointense
  • T1 C+: typically enhances in a peripheral rim pattern or a diffusely heterogeneous pattern
  • T2*: susceptibility artefacts are commonly encountered secondary to haemorrhage (they are not related to melanin content)
    • reported in 42% of cases (compared to 8% of lung metastases) 12
    • some metastases can solely be observable on T2*, although isolated T2* hypointensities should be interpreted cautiously, as other studies reported contradictory findings 12,13

Treatment and prognosis

The prognosis of cerebral metastatic melanoma is dismal. Without treatment, the average survival time from the beginning of neurologic symptoms was 65 days in one study 8-9. Even with chemotherapy and radiotherapy, the survival time has only been extended to a range of 4 months to approximately 2 years 10.

Differential diagnosis

On imaging consider:

Related articles

  • -<strong>T1:</strong> typically hyperintense secondary to hemorrhage or melanin (as above)</li>
  • +<strong>T1: </strong><strong>​</strong>typically hyperintense secondary to haemorrhage or melanin (as above)</li>
  • +<li>
  • +<strong>T2*:</strong> susceptibility artefacts are commonly encountered secondary to haemorrhage (they are not related to melanin content)<ul>
  • +<li>reported in 42% of cases (compared to 8% of lung metastases) <sup>12</sup>
  • +</li>
  • +<li>some metastases can solely be observable on T2*, although isolated T2* hypointensities should be interpreted cautiously, as other studies reported contradictory findings<sup> 12,13</sup>
  • +</li>
  • +</ul>
  • +</li>

References changed:

  • 12. P. Gaviani, M.E. Mullins, T.A. Braga, E.T. Hedley-Whyte, E.F. Halpern, P.S. Schaefer, J.W. Henson. Improved Detection of Metastatic Melanoma by T2*-Weighted Imaging. American Journal of Neuroradiology. 27 (3): 605. <a href="https://www.ncbi.nlm.nih.gov/pubmed/16552002">Pubmed</a> <span class="ref_v4"></span>
  • 13. Gramsch C, Göricke SL, Behrens F, Zimmer L, Schadendorf D, Krasny A, Forsting M, Schlamann MU. Isolated cerebral susceptibility artefacts in patients with malignant melanoma: metastasis or not?. European radiology. 23 (9): 2622-7. <a href="https://doi.org/10.1007/s00330-013-2857-3">doi:10.1007/s00330-013-2857-3</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23670820">Pubmed</a> <span class="ref_v4"></span>

ADVERTISEMENT: Supporters see fewer/no ads