Pericallosal lipoma

Last revised by Rohit Sharma on 18 Mar 2024

Pericallosal lipomas are fat-containing lesions occurring in the interhemispheric fissure closely related to the corpus callosum, which is often abnormal. It is the most common location for an intracranial lipoma making up around 50% of them.

Pericallosal lipomas are rare, found in only 1 in 2,500 to 1 in 25,000 autopsies 6.

Approximately 50% of patients present with seizures 6. The tubulonodular variety (see below) is usually associated with more severe and extensive abnormalities and thus is more frequently symptomatic.

With the increasing use of antenatal sonography more and more cases are being detected incidentally in utero

The pathogenesis of a pericallosal lipoma is considered to be the result of an abnormal persistence and differentiation of the meninx primitiva into lipomatous tissue 6. The meninx primitiva usually differentiates into the three layer meninges by the end of the first trimester 10.

Pericallosal lipomas can be grouped into two distinct types based on imaging:

  • tubulonodular 

  • curvilinear

Tubulonodular pericallosal lipomas are the more common variety. They are rounded or lobular and usually measure >2 cm in thickness. They are anteriorly situated and are associated with extensive callosal and often fronto-facial anomalies. The tubulonodular variety can extend into the choroid plexus and/or lateral ventricles 2,3,6

Curvilinear pericallosal lipomas are usually thin, elongated and curvilinear along the corpus callosum margin. They usually measure <1 cm in thickness and are more posteriorly situated. The corpus callosum is only mildly hypoplastic 2,3,6.

In a small minority of pericallosal lipomas, a connection with extracranial subcutaneous lipomas is seen. This may be through a skull defect (cranium bifidum) in which case the masses are continuous with each other, or via a thin fibrous-lipomatous stalk with an apparently intact skull vault 8.

Ultrasound demonstrates the characteristic appearance of fat: a hyperechoic midline mass in the region of the corpus callosum 5.

CT is diagnostic, demonstrating fat density mass (-80 to -110 HU) 7. Additionally, the tubulonodular variety may show peripheral curvilinear calcification sometimes referred to as the bracket sign on coronal reformatted images.

The anterior cerebral vessels can be seen coursing through or above the mass and may have associated vascular malformations or aneurysm formation 6,8. CT angiography may thus be indicated.

MRI is the modality of choice to characterize not only the extent of the lipoma but also the frequently associated agenesis/dysgenesis of the corpus callosum.

Not surprisingly, these masses follow signal intensity of fat on all sequences 2,3,6,7:

  • T1

    • markedly hyperintense

    • demonstrates signal attenuation on fat suppression sequences

  • T2

    • high signal, but marginally lower than CSF

    • demonstrates signal attenuation on fat suppression sequences but not on FLAIR

  • T1 C+ (Gd): no enhancement

  • GE/EPI/SWI: the presence of peripheral calcification leads to blooming

Additionally, peripheral chemical shift artifact may be prominent in some sequences. 

Again, as vascular abnormalities are associated with these lesions, careful examination of the vessels is essential (best seen on T2 FSE sequences and, if available, on MRA).

No specific treatment is usually required 9, although seizures, if present, require medical management. In the rare cases where a cranium bifidum is present, surgical repair may be necessary. Surgery is not recommended in asymptomatic patients as the lesion is midline and surrounded by important neurovascular structures at risk of intra-operative complications 11.

Prognosis is good but the degree of disability is variable, ranging from severe neurological dysfunction and debilitating seizures to completely asymptomatic.

In general, there is few differentials, as few intracranial masses have significant fatty components. The differentials include:

ADVERTISEMENT: Supporters see fewer/no ads