CT cervical spine (protocol)

Changed by Joachim Feger, 23 Dec 2021

Updates to Article Attributes

Body was changed:

The CT cervical spine or C-spine protocol serves as an examination for the assessment of the cervical spine. It is usually performed as a non-contrast study. In certain situations, it might be combined or simultaneously acquired with a CT angiography of the cerebral arteries or a CT of the neck. It also forms a part of a polytrauma CT or might rarely be done as a CT myelogram in situations where MRI is contraindicated.

Note: This article aims to frame a general concept of a CT protocol for the assessment of the cervical spine. Protocol specifics will vary depending on CT scanner type, specific hardware and software, radiologist and perhaps referrer preference, patient factors e.g. implants, specific indications.

A typical CT of the cervical spine might look like as follows:

Indications

Typical indications include the following 1-4:

Purpose

The most common purpose of a CT of the cervical spine is the timely diagnosis and classification or exclusion of cervical spine injuries and the evaluation of the osseous spinal canal including 1-3:

In the setting of vertebral metastasis or spinal tumours this also includes the assessment of the following: 

Technique

  • patient position
    • supine position 
    • both arms next to the body, shoulders pulled down
  • tube voltage
    • ≤120 kVp
  • tube current
    • as suggested by the automated current adjustment mode 
  • scout
    • from above the temporal bone to the manubrium sterni 
  • scan extent
    • should include the base of the skull and the first thoracic vertebra
  • scan direction
    • craniocaudal
  • scan geometry
    • field of view (FOV): 120-200 mm (should be adjusted to increase in-plane resolution)
    • slice thickness: ≤1 mm, interval: ≤0.75 mm
    • reconstruction kernelalgorithm: bone kernel (e.g. B70), soft tissue kernel (e.g. B40)
  • multiplanar reconstructions/reformats
    • sagittal images: sagittal aligned through the centre of the dens and the vertebral bodies
    • coronal images: coronal aligned to the transverse processes
    • axial images:perpendicular to the cervical spine and the neck
    • slice thickness: ≤1.5 mm, overlap 50%

Practical points

  • -<li>cervical spine implants and complications</li>
  • +<li>
  • +<a title="Spinal instrumentation hardware" href="/articles/spinal-instrumentation-hardware">cervical spine implants</a> and <a title="Complications of spinal surgery" href="/articles/complications-of-spinal-surgery">complications</a>
  • +</li>
  • -<li><a href="/articles/ao-classification-of-subaxial-injuries">subaxial injuries</a></li>
  • +<li><a href="/articles/ao-spine-classification-of-subaxial-injuries">subaxial injuries</a></li>
  • -<li>reconstruction kernel: bone kernel (e.g. B70), soft tissue kernel (e.g. B40)</li>
  • +<li>reconstruction algorithm: bone, soft tissue</li>

References changed:

  • 1. Holmes J & Akkinepalli R. Computed Tomography Versus Plain Radiography to Screen for Cervical Spine Injury: A Meta-Analysis. The Journal of Trauma: Injury, Infection, and Critical Care. 2005;58(5):902-5. <a href="https://doi.org/10.1097/01.ta.0000162138.36519.2a">doi:10.1097/01.ta.0000162138.36519.2a</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/15920400">Pubmed</a>
  • 2. Hale A, Alvarado A, Bey A et al. X-Ray Vs. CT in Identifying Significant C-Spine Injuries in the Pediatric Population. Childs Nerv Syst. 2017;33(11):1977-83. <a href="https://doi.org/10.1007/s00381-017-3448-4">doi:10.1007/s00381-017-3448-4</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/28656384">Pubmed</a>
  • 3. NICE Pathways: Investigation for injuries to the cervical spine in patients with head injury <a href="https://pathways.nice.org.uk/pathways/head-injury/investigation-for-injuries-to-the-cervical-spine-in-patients-with-head-injury">NICE Pathways - head injuries </a>
  • 4. Moeri M, Rothenfluh D, Laux C, Dominguez D. Cervical Spine Clearance After Blunt Trauma: Current State of the Art. EFORT Open Reviews. 2020;5(4):253-9. <a href="https://doi.org/10.1302/2058-5241.5.190047">doi:10.1302/2058-5241.5.190047</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/32373348">Pubmed</a>
  • 5. Tins B. Technical Aspects of CT Imaging of the Spine. Insights Imaging. 2010;1(5-6):349-59. <a href="https://doi.org/10.1007/s13244-010-0047-2">doi:10.1007/s13244-010-0047-2</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/22347928">Pubmed</a>
  • 6. Becce F, Ben Salah Y, Verdun F et al. Computed Tomography of the Cervical Spine: Comparison of Image Quality Between a Standard-Dose and a Low-Dose Protocol Using Filtered Back-Projection and Iterative Reconstruction. Skeletal Radiol. 2013;42(7):937-45. <a href="https://doi.org/10.1007/s00256-013-1576-9">doi:10.1007/s00256-013-1576-9</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23359034">Pubmed</a>
  • 7. Tozakidou M, Yang S, Kovacs B et al. Dose-Optimized Computed Tomography of the Cervical Spine in Patients with Shoulder Pull-Down: Is Image Quality Comparable with a Standard Dose Protocol in an Emergency Setting? Eur J Radiol. 2019;120:108655. <a href="https://doi.org/10.1016/j.ejrad.2019.108655">doi:10.1016/j.ejrad.2019.108655</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/31542699">Pubmed</a>
  • 8. Tozakidou M, Reisinger C, Harder D et al. Systematic Radiation Dose Reduction in Cervical Spine CT of Human Cadaveric Specimens: How Low Can We Go? AJNR Am J Neuroradiol. 2017;39(2):385-91. <a href="https://doi.org/10.3174/ajnr.a5490">doi:10.3174/ajnr.a5490</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29269403">Pubmed</a>
  • 1. Holmes J & Akkinepalli R. Computed Tomography Versus Plain Radiography to Screen for Cervical Spine Injury: A Meta-Analysis. J Trauma. 2005;58(5):902-5. <a href="https://doi.org/10.1097/01.ta.0000162138.36519.2a">doi:10.1097/01.ta.0000162138.36519.2a</a>
  • 2. Hale A, Alvarado A, Bey A et al. X-Ray Vs. CT in Identifying Significant C-Spine Injuries in the Pediatric Population. Childs Nerv Syst. 2017;33(11):1977-1983. <a href="https://doi.org/10.1007/s00381-017-3448-4">doi:10.1007/s00381-017-3448-4</a>
  • 3. NICE Pathways: Investigation for injuries to the cervical spine in patients with head injury <a href="https://pathways.nice.org.uk/pathways/head-injury/investigation-for-injuries-to-the-cervical-spine-in-patients-with-head-injury">NICE Pathways - head injuries </a> <span class=“ref_v4"></span>
  • 4. Moeri M, Rothenfluh D, Laux C, Dominguez D. Cervical Spine Clearance After Blunt Trauma: Current State of the Art. EFORT Open Rev. 2020;5(4):253-259. <a href="https://doi.org/10.1302/2058-5241.5.190047">doi:10.1302/2058-5241.5.190047</a>
  • 5. Tins B. Technical Aspects of CT Imaging of the Spine. Insights Imaging. 2010;1(5-6):349-359. <a href="https://doi.org/10.1007/s13244-010-0047-2">doi:10.1007/s13244-010-0047-2</a>
  • 6. Becce F, Ben Salah Y, Verdun F et al. Computed Tomography of the Cervical Spine: Comparison of Image Quality Between a Standard-Dose and a Low-Dose Protocol Using Filtered Back-Projection and Iterative Reconstruction. Skeletal Radiol. 2013;42(7):937-45. <a href="https://doi.org/10.1007/s00256-013-1576-9">doi:10.1007/s00256-013-1576-9</a>
  • 7. Tozakidou M, Yang S, Kovacs B et al. Dose-Optimized Computed Tomography of the Cervical Spine in Patients with Shoulder Pull-Down: Is Image Quality Comparable with a Standard Dose Protocol in an Emergency Setting? Eur J Radiol. 2019;120:108655. <a href="https://doi.org/10.1016/j.ejrad.2019.108655">doi:10.1016/j.ejrad.2019.108655</a>
  • 8. Tozakidou M, Reisinger C, Harder D et al. Systematic Radiation Dose Reduction in Cervical Spine CT of Human Cadaveric Specimens: How Low Can We Go? AJNR Am J Neuroradiol. 2018;39(2):385-391. <a href="https://doi.org/10.3174/ajnr.A5490">doi:10.3174/ajnr.A5490</a>

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.