Giant cell tumor of bone

Changed by Joachim Feger, 14 Oct 2021

Updates to Article Attributes

Body was changed:

Giant cell tumours of bone, also known as osteoclastomas, are relatively common bone tumours and are usually benign. They typically arise from the metaphysis of long bones, extend into the epiphysis adjacent to the joint surface, and have a narrow zone of transition.

Epidemiology

Giant cell tumours are common, comprising 18-23% of benign bone neoplasms and 4-9.5% of all primary bone neoplasms 1. They almost invariably (97-99%) occur when the growth plate has closed and are therefore typically seen in early adulthood. 80% of cases are reported between the ages of 20 and 50, with a peak incidence between 20 and 30 1.

There is overall a mild female predilection, especially when located in the spine. However, malignant transformation is far more common in men (M:F of ~3:1) 1.

Clinical presentation

Often they are incidentally identified. They may present insidiously with bone pain, soft tissue mass, or compression of adjacent structures. The pathological fracture may result in an acute presentation.

Pathology

Giant cell tumours are believed to result from an over-expression in the RANK/RANKL signalling pathway with resultant hyperproliferation of osteoclasts 6.

These tumours contain numerous thin-walled vascular channels predisposing to areas of haemorrhage and presumably related to the relatively frequent coexistence of aneurysmal bone cysts found in 14% of cases 1,2,4.

Macroscopic appearance

Macroscopically, giant cell tumours are variable in appearance, depending on the amount of haemorrhage, the presence of a coexistent aneurysmal bone cyst, and the degree of fibrosis.

Histology

Microscopically they are characterized by prominent and diffuse osteoclastic giant cells and mononuclear cells (round, oval, or polygonal and may resemble normal histiocytes). Frequent mitotic figures in the mononuclear cells may be seen, especially in pregnant women or those on the oral contraceptive pill (due to increased hormone levels) 1

Giant cell tumours are low-grade tumours even in radiologically aggressive appearing lesions. Approximately 5-10% are malignant 1. Sarcomatous transformation is seen, especially in radiotherapy treated inoperable tumours. Although rare (~5%), lung metastases are possible and have an excellent prognosis. Hence, this entity has been called benign metastasizing giant cell tumour 10,11.

It is important to realize that features may be difficult to interpret histologically with a relatively wide histological differential diagnosis (e.g. giant cell reparative granuloma, brown tumour, osteoblastoma, chondroblastoma, non-ossifying fibroma, and even osteosarcoma with abundant giant cells) 1, thus rendering radiology indispensable to the interpretation of these lesions.

Location

They typically occur as single lesions. Although any bone can be affected, the most common sites are 1,2:

  • around the knee: distal femur and proximal tibia: 50-65%
  • distal radius: 10-12%
  • sacrum: 4-9%
  • vertebral body: 7%
    • thoracic spine most common, followed by cervical and lumbar spines

Multiple locations: ≈1% (multiple lesions usually occur in association with Paget disease).

Radiographic features

Classic appearance

There are four characteristic radiographic features when a giant cell tumour is located in a long bone:

  • occurs only with a closed growth plate
  • abuts articular surface: 84-99% come within 1 cm of the articular surface 1
  • well-defined with non-sclerotic margin (though <5% may show some sclerosis 8)
  • eccentric: if large this may be difficult to assess
Plain radiograph / CT

General radiographic features include:

  • a narrow zone of transition: a broader zone of transition is seen in more aggressive giant cell tumours
  • no surrounding sclerosis: 80-85%
  • overlying cortex is thinned, expanded, or deficient
  • periosteal reaction is only seen in 10-30% of cases
  • soft tissue mass is not infrequent
  • a pathological fracture may be present
  • no matrix calcification/mineralisation
MRI

Typical signal characteristics include:

  • T1
    • low to intermediate signal, solid component
    • low signal periphery
    • solid components enhance, helping distinguish giant cell tumours with an aneurysmal bone cyst (ABC) from a pure ABC 3,4
    • some enhancement may also be seen in adjacent bone marrow
  • T2
    • heterogeneous high signal with areas of low signal intensity (variable) due to hemosiderin or fibrosis 9
    • if an aneurysmal bone cyst component is present, then fluid-fluid levels can be seen
    • high signal in adjacent bone marrow thought to represent inflammatory oedema 4
  • T1 C+ (Gd): solid components will enhance, helping differentiate from aneurysmal bone cysts 9
Nuclear medicine

On bone scintigraphy, most giant cell tumours demonstrate increased uptake on delayed images, especially around the periphery, with a central photopenic region (doughnut sign). Increased blood pool activity is also seen, and can be seen in adjacent bones due to generalized regional hyperemia (contiguous bone activity).

Angiography (DSA)

If performed, usually in the setting of preoperative embolization, angiography usually demonstrates a hypervascular tumour (two-thirds of cases) with the rest being hypovascular or avascular.

Treatment and prognosis

Classically, treatment is with curettage and packing with bone chips or polymethylmethacrylate (PMMA). Local recurrence is from the periphery of the lesion and has historically occurred in up to 40-60% of cases. Newer intraoperative adjuncts such as thermocoagulation, cryotherapy, or chemical treatment of the resection margins have lowered the recurrence rate to 2.5-10% 1. Early work on monoclonal antibodies (e.g. denosumab) as an adjuvant treatment targeted at tumour necrosis has shown impressive results 7. Wide local excision is associated with a lower recurrence rate but has greater morbidity.

Differential diagnosis

There is a relatively wide differential similar to that of a lytic bone lesion:

See also

  • -<p><strong>Giant cell tumours of bone</strong>, also known as <strong>osteoclastomas</strong>, are relatively common bone tumours and are usually benign. They typically arise from the metaphysis of long bones, extend into the epiphysis adjacent to the joint surface, and have a narrow zone of transition.</p><h4>Epidemiology</h4><p>Giant cell tumours are common, comprising 18-23% of benign bone neoplasms and 4-9.5% of all primary bone neoplasms <sup>1</sup>. They almost invariably (97-99%) occur when the growth plate has closed and are therefore typically seen in early adulthood. 80% of cases are reported between the ages of 20 and 50, with a peak incidence between 20 and 30 <sup>1</sup>.</p><p>There is overall a mild female predilection, especially when located in the spine. However, malignant transformation is far more common in men (M:F of ~3:1) <sup>1</sup>.</p><h4>Clinical presentation</h4><p>Often they are incidentally identified. They may present insidiously with bone pain, soft tissue mass, or compression of adjacent structures. The pathological fracture may result in an acute presentation.</p><h4>Pathology</h4><p>Giant cell tumours are believed to result from an over-expression in the RANK/RANKL signalling pathway with resultant hyperproliferation of osteoclasts <sup>6</sup>.</p><p>These tumours contain numerous thin-walled vascular channels predisposing to areas of haemorrhage and presumably related to the relatively frequent coexistence of <a href="/articles/aneurysmal-bone-cyst">aneurysmal bone cysts</a> found in 14% of cases<sup> 1,2,4</sup>.</p><h5>Macroscopic appearance</h5><p>Macroscopically, giant cell tumours are variable in appearance, depending on the amount of haemorrhage, the presence of a coexistent aneurysmal bone cyst, and degree of fibrosis.</p><h5>Histology</h5><p>Microscopically they are characterized by prominent and diffuse osteoclastic giant cells and mononuclear cells (round, oval, or polygonal and may resemble normal histiocytes). Frequent mitotic figures in the mononuclear cells may be seen, especially in pregnant women or those on the oral contraceptive pill (due to increased hormone levels) <sup>1</sup>. </p><p>Giant cell tumours are low-grade tumours even in radiologically aggressive appearing lesions. Approximately 5-10% are malignant <sup>1</sup>. Sarcomatous transformation is seen, especially in radiotherapy treated inoperable tumours. Although rare (~5%), <a href="/articles/pulmonary-metastases">lung metastases</a> are possible and have an excellent prognosis. Hence, this entity has been called <strong>benign metastasizing giant cell tumour</strong> <sup>10,11</sup>.</p><p>It is important to realize that features may be difficult to interpret histologically with a relatively wide histological differential diagnosis (e.g. <a href="/articles/central-giant-cell-lesions-granuloma">giant cell reparative granuloma</a>, <a href="/articles/brown-tumour">brown tumour</a>, <a href="/articles/osteoblastoma">osteoblastoma</a>, <a href="/articles/chondroblastoma">chondroblastoma</a>, <a href="/articles/non-ossifying-fibroma-1">non-ossifying fibroma</a>, and even <a href="/articles/osteosarcoma">osteosarcoma</a> with abundant giant cells) <sup>1</sup>, thus rendering radiology indispensable to the interpretation of these lesions.</p><h5>Location</h5><p>They typically occur as single lesions. Although any bone can be affected, the most common sites are <sup>1,2</sup>:</p><ul>
  • +<p><strong>Giant cell tumours of bone</strong>, also known as <strong>osteoclastomas</strong>, are relatively common bone tumours and are usually benign. They typically arise from the metaphysis of long bones, extend into the epiphysis adjacent to the joint surface, and have a narrow zone of transition.</p><h4>Epidemiology</h4><p>Giant cell tumours are common, comprising 18-23% of benign bone neoplasms and 4-9.5% of all primary bone neoplasms <sup>1</sup>. They almost invariably (97-99%) occur when the growth plate has closed and are therefore typically seen in early adulthood. 80% of cases are reported between the ages of 20 and 50, with a peak incidence between 20 and 30 <sup>1</sup>.</p><p>There is overall a mild female predilection, especially when located in the spine. However, malignant transformation is far more common in men (M:F of ~3:1) <sup>1</sup>.</p><h4>Clinical presentation</h4><p>Often they are incidentally identified. They may present insidiously with bone pain, soft tissue mass, or compression of adjacent structures. The pathological fracture may result in an acute presentation.</p><h4>Pathology</h4><p>Giant cell tumours are believed to result from an over-expression in the RANK/RANKL signalling pathway with resultant hyperproliferation of osteoclasts <sup>6</sup>.</p><p>These tumours contain numerous thin-walled vascular channels predisposing to areas of haemorrhage and presumably related to the relatively frequent coexistence of <a href="/articles/aneurysmal-bone-cyst">aneurysmal bone cysts</a> found in 14% of cases<sup> 1,2,4</sup>.</p><h5>Macroscopic appearance</h5><p>Macroscopically, giant cell tumours are variable in appearance, depending on the amount of haemorrhage, the presence of a coexistent aneurysmal bone cyst, and the degree of fibrosis.</p><h5>Histology</h5><p>Microscopically they are characterized by prominent and diffuse osteoclastic giant cells and mononuclear cells (round, oval, or polygonal and may resemble normal histiocytes). Frequent mitotic figures in the mononuclear cells may be seen, especially in pregnant women or those on the oral contraceptive pill (due to increased hormone levels) <sup>1</sup>. </p><p>Giant cell tumours are low-grade tumours even in radiologically aggressive appearing lesions. Approximately 5-10% are malignant <sup>1</sup>. Sarcomatous transformation is seen, especially in radiotherapy treated inoperable tumours. Although rare (~5%), <a href="/articles/pulmonary-metastases">lung metastases</a> are possible and have an excellent prognosis. Hence, this entity has been called <strong>benign metastasizing giant cell tumour</strong> <sup>10,11</sup>.</p><p>It is important to realize that features may be difficult to interpret histologically with a relatively wide histological differential diagnosis (e.g. <a href="/articles/central-giant-cell-lesions-granuloma">giant cell reparative granuloma</a>, <a href="/articles/brown-tumour">brown tumour</a>, <a href="/articles/osteoblastoma">osteoblastoma</a>, <a href="/articles/chondroblastoma">chondroblastoma</a>, <a href="/articles/non-ossifying-fibroma-1">non-ossifying fibroma</a>, and even <a href="/articles/osteosarcoma">osteosarcoma</a> with abundant giant cells) <sup>1</sup>, thus rendering radiology indispensable to the interpretation of these lesions.</p><h5>Location</h5><p>They typically occur as single lesions. Although any bone can be affected, the most common sites are <sup>1,2</sup>:</p><ul>
  • -<li>low to intermediate signal solid component</li>
  • +<li>low to intermediate signal, solid component</li>
  • -<li>if an aneurysmal bone cyst component present, then fluid-fluid levels can be seen</li>
  • +<li>if an aneurysmal bone cyst component is present fluid-fluid levels can be seen</li>

References changed:

  • 1. WHO Classification of Tumours Editorial Board. WHO Classification of Tumours, 5th Edition. Soft Tissue and Bone Tumours. (2020) ISBN: 9789283245025 - <a href=" https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Soft-Tissue-And-Bone-Tumours-2020 ">IARC Publications</a>
  • 2. Rockberg J, Bach B, Amelio J et al. Incidence Trends in the Diagnosis of Giant Cell Tumor of Bone in Sweden Since 1958. J Bone Joint Surg Am. 2015;97(21):1756-66. <a href="https://doi.org/10.2106/JBJS.O.00156">doi:10.2106/JBJS.O.00156</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/26537163">Pubmed</a>
  • 3. Verschoor A, Bovée J, Mastboom M, Sander Dijkstra P, Van De Sande M, Gelderblom H. Incidence and Demographics of Giant Cell Tumor of Bone in The Netherlands: First Nationwide Pathology Registry Study. Acta Orthop. 2018;89(5):570-4. <a href="https://doi.org/10.1080/17453674.2018.1490987">doi:10.1080/17453674.2018.1490987</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29987945">Pubmed</a>
  • 4. Chakarun C, Forrester D, Gottsegen C, Patel D, White E, Matcuk G. Giant Cell Tumor of Bone: Review, Mimics, and New Developments in Treatment. Radiographics. 2013;33(1):197-211. <a href="https://doi.org/10.1148/rg.331125089">doi:10.1148/rg.331125089</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/23322837">Pubmed</a>
  • 5. Murphey M, Nomikos G, Flemming D, Gannon F, Temple H, Kransdorf M. Imaging of Giant Cell Tumor and Giant Cell Reparative Granuloma of Bone: Radiologic-Pathologic Correlation. Radiographics. 2001;21(5):1283-309. <a href="https://doi.org/10.1148/radiographics.21.5.g01se251283">doi:10.1148/radiographics.21.5.g01se251283</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/11553835">Pubmed</a>
  • 6. Pathak H, Nardi P, Thornhill B. Multiple Giant Cell Tumors Complicating Paget's Disease. AJR Am J Roentgenol. 1999;172(6):1696-7. <a href="https://doi.org/10.2214/ajr.172.6.10350323">doi:10.2214/ajr.172.6.10350323</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/10350323">Pubmed</a>
  • 7. Vinay Kumar, Abul K. Abbas, Nelson Fausto et al. Robbins and Cotran Pathologic Basis of Disease, Professional Edition E-Book. (2009) ISBN: 9781437721829 - <a href="http://books.google.com/books?vid=ISBN9781437721829">Google Books</a>
  • 8. van der Heijden L, Dijkstra P, van de Sande M et al. The Clinical Approach Toward Giant Cell Tumor of Bone. Oncologist. 2014;19(5):550-61. <a href="https://doi.org/10.1634/theoncologist.2013-0432">doi:10.1634/theoncologist.2013-0432</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/24718514">Pubmed</a>
  • 9. Parmeggiani A, Miceli M, Errani C, Facchini G. State of the Art and New Concepts in Giant Cell Tumor of Bone: Imaging Features and Tumor Characteristics. Cancers (Basel). 2021;13(24):6298. <a href="https://doi.org/10.3390/cancers13246298">doi:10.3390/cancers13246298</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/34944917">Pubmed</a>
  • 10. Amary F, Berisha F, Ye H et al. H3F3A (Histone 3.3) G34W Immunohistochemistry: A Reliable Marker Defining Benign and Malignant Giant Cell Tumor of Bone. Am J Surg Pathol. 2017;41(8):1059-68. <a href="https://doi.org/10.1097/PAS.0000000000000859">doi:10.1097/PAS.0000000000000859</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/28505000">Pubmed</a>
  • 11. Chang C, Garner H, Ahlawat S et al. Society of Skeletal Radiology- White Paper. Guidelines for the Diagnostic Management of Incidental Solitary Bone Lesions on CT and MRI in Adults: Bone Reporting and Data System (Bone-RADS). Skeletal Radiol. 2022. <a href="https://doi.org/10.1007/s00256-022-04022-8">doi:10.1007/s00256-022-04022-8</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/35344076">Pubmed</a>
  • 18. Salzer-Kuntschik M. [Differential Diagnosis of Giant Cell Tumor of Bone]. Verh Dtsch Ges Pathol. 1998;82:154-9. - <a href="https://www.ncbi.nlm.nih.gov/pubmed/10095427">Pubmed</a>
  • 1. Murphey MD, Nomikos GC, Flemming DJ et-al. From the archives of AFIP. Imaging of giant cell tumor and giant cell reparative granuloma of bone: radiologic-pathologic correlation. Radiographics. 21 (5): 1283-309. <a href="http://radiographics.rsna.org/content/21/5/1283.full">Radiographics (full text)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/11553835">Pubmed citation</a><div class="ref_v2"></div>
  • 2. Renton P. Orthopaedic radiology, pattern recognition and differential diagnosis. Informa HealthCare. (1998) ISBN:1853174343. <a href="http://books.google.com/books?vid=ISBN1853174343">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/1853174343?ie=UTF8&tag=radiopaediaor-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1853174343">Find it at Amazon</a><div class="ref_v2"></div>
  • 3. Stacy GS, Peabody TD, Dixon LB. Mimics on radiography of giant cell tumor of bone. AJR Am J Roentgenol. 2003;181 (6): 1583-9. <a href="http://www.ajronline.org/cgi/content/full/181/6/1583">AJR Am J Roentgenol (full text)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/14627578">Pubmed citation</a><div class="ref_v2"></div>
  • 4. Meyers SP. MRI of bone and soft tissue tumors and tumorlike lesions, differential diagnosis and atlas. Thieme Publishing Group. (2008) ISBN:3131354216. <a href="http://books.google.com/books?vid=ISBN3131354216">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/3131354216?ie=UTF8&tag=radiopaediaor-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=3131354216">Find it at Amazon</a><div class="ref_v2"></div>
  • 5. Pathak HJ, Nardi PM, Thornhill B. Multiple giant cell tumors complicating Paget's disease. AJR Am J Roentgenol. 1999;172 (6): 1696-7. <a href="http://www.ajronline.org/cgi/content/citation/172/6/1696">AJR Am J Roentgenol (citation)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/10350323">Pubmed citation</a><div class="ref_v2"></div>
  • 6. Abbas AK, Kumar V, Fausto N et-al. Robbins and Cotran Pathologic Basis of Disease, Professional Edition E-Book, Expert Consult - Online and Print. W.B. Saunders Company. (2010) ISBN:1437721826. <a href="http://books.google.com/books?vid=ISBN1437721826">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/1437721826?ie=UTF8&tag=radiopaediaor-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1437721826">Find it at Amazon</a><div class="ref_v2"></div>
  • 7. Chakarun C, Forrester D, Gottsegen C et-al. Giant Cell Tumor of Bone: Review, Mimics, and New Developments in Treatment. Radiographics. 2013;33 (1): 197-211. <a href="http://radiographics.rsna.org/content/33/1/197.full">Radiographics (full text)</a> - <a href="http://dx.doi.org/10.1148/rg.331125089">doi:10.1148/rg.331125089</a><span class="ref_v3"></span
  • 8. Purohit S, Pardiwala DN. Imaging of giant cell tumor of bone. Indian J Orthop. 2007;41 (2): 91-6. <a href="http://dx.doi.org/10.4103/0019-5413.32037">doi:10.4103/0019-5413.32037</a> - <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989147">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/21139758">Pubmed citation</a><span class="auto"></span>
  • 9. Pereira HM, Marchiori E, Severo A. Magnetic resonance imaging aspects of giant-cell tumours of bone. J Med Imaging Radiat Oncol. 2014;58 (6): 674-8. <a href="http://dx.doi.org/10.1111/1754-9485.12249">doi:10.1111/1754-9485.12249</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/25256094">Pubmed citation</a><span class="auto"></span>
  • 10. Muheremu A, Niu X. Pulmonary metastasis of giant cell tumor of bones. World J Surg Oncol.12 (1): 261. <a href="http://dx.doi.org/10.1186/1477-7819-12-261">doi:10.1186/1477-7819-12-261</a> - <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155080">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/25139054">Pubmed citation</a><span class="auto"></span>
  • 11. Viswanathan S, Jambhekar NA. Metastatic giant cell tumor of bone: are there associated factors and best treatment modalities?. Clin. Orthop. Relat. Res. 2010;468 (3): 827-33. <a href="http://dx.doi.org/10.1007/s11999-009-0966-8">doi:10.1007/s11999-009-0966-8</a> - <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816751">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/19597900">Pubmed citation</a><span class="auto"></span>
  • 12. Salzer-Kuntschik M. [Differential diagnosis of giant cell tumor of bone]. (1998) Verhandlungen der Deutschen Gesellschaft fur Pathologie. 82: 154-9. <a href="https://www.ncbi.nlm.nih.gov/pubmed/10095427">Pubmed</a> <span class="ref_v4"></span>
Images Changes:

Image 2 Pathology (H&E) ( update )

Position was set to .

Image 3 X-ray (Frontal) ( update )

Position was set to .

Image 23 MRI (T2) ( create )

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.