Steady-state free precession MRI
Citation, DOI, disclosures and article data
At the time the article was created Yuranga Weerakkody had no recorded disclosures.
View Yuranga Weerakkody's current disclosuresAt the time the article was last revised Mateusz Wilczek had no financial relationships to ineligible companies to disclose.
View Mateusz Wilczek's current disclosures- SSFP
- Steady state free precession (SSFP)
- Steady-state free precession MRI (SSFP)
- Steady-state GRE
- Coherent GRE
Steady-state free precession MRI (SSFP) is a type of gradient echo MRI pulse sequence in which a steady, residual transverse magnetization (Mxy) is maintained between successive cycles. The sequence is noted for its superiority in dynamic/cine assessment of cardiac function.
On this page:
Discussion
To understand SSFP (and all MR imaging for that matter), the first thing to bear in mind is that the magnetization vector has two components: Mz and Mxy. Both are at 90° to each other and excitation pulses which flip the vector result in conversion of one component into the other. Added to this interconversion is the spontaneous regrowth of Mz and decay of Mxy governed by T1 and T2 intervals, respectively. Over several sequences, a steady-state of equilibrium is achieved, with constant magnitudes of Mz and Mxy at the beginning of the cycle.
A steady-state is achieved in tissues with a sufficiently long T2 interval, by keeping the TR shorter than T2.
Types of image formed
At steady state, two signal types are present:
T1/T2* weighted: the mixed steady-state signal - subjected to refocusing gradient; this generates the free induction decay (typical of a GRE sequence)
T2 weighted: the residual Mxy at the beginning of the next pulse; the α flip (50°-80° in typical GRE) results in spin-echo (analogous to the 180° refocusing pulse used in spin-echo)
Applications
fetal imaging
abdominal imaging
See also
References
- 1. Kacere RD, Pereyra M, Nemeth MA et-al. Quantitative assessment of left ventricular function: steady-state free precession MR imaging with or without sensitivity encoding. Radiology. 2005;235 (3): 1031-5. doi:10.1148/radiol.2353030995 - Pubmed citation
- 2. Chavhan G, Babyn P, Jankharia B, Cheng H, Shroff M. Steady-State MR Imaging Sequences: Physics, Classification, and Clinical Applications. Radiographics. 2008;28(4):1147-60. doi:10.1148/rg.284075031 - Pubmed
- 3. Boyle GE, Ahern M, Cooke J et-al. An interactive taxonomy of MR imaging sequences. Radiographics. 26 (6): e24. doi:10.1148/rg.e24 - Pubmed citation
Incoming Links
- Infective endocarditis
- Truncus arteriosus
- Coronary MR angiography
- Fetal MRI
- Hypoplastic left heart syndrome
- Medical abbreviations and acronyms (B)
- Cardiac iron overload protocol (MRI)
- Intracardiac thrombus
- MR enterography
- Transposition of the great arteries
- Medical abbreviations and acronyms (F)
- T1 mapping - myocardium
- Crohn disease
- Aortopulmonary septal defect
- MR fingerprinting
- Cine imaging (MRI)
- MRI pulse sequence abbreviations
- Medical abbreviations and acronyms (S)
- T2 mapping - myocardium
- Myocardial area at risk
Related articles: Imaging technology
- imaging technology
- imaging physics
- imaging in practice
-
x-rays
- x-ray physics
- x-ray in practice
- x-ray production
- x-ray tube
- filters
- automatic exposure control (AEC)
- beam collimators
- grids
- air gap technique
- cassette
- intensifying screen
- x-ray film
- image intensifier
- digital radiography
- digital image
- mammography
- x-ray artifacts
- radiation units
- radiation safety
- radiation detectors
- fluoroscopy
-
computed tomography (CT)
- CT physics
- CT in practice
- CT technology
- CT image reconstruction
- CT image quality
- CT dose
-
CT contrast media
-
iodinated contrast media
- agents
- water soluble
- water insoluble
- vicarious contrast material excretion
- iodinated contrast media adverse reactions
- agents
- non-iodinated contrast media
-
iodinated contrast media
-
CT artifacts
- patient-based artifacts
- physics-based artifacts
- hardware-based artifacts
- ring artifact
- tube arcing
- out of field artifact
- air bubble artifact
- helical and multichannel artifacts
- CT safety
- history of CT
-
MRI
- MRI physics
- MRI in practice
- MRI hardware
- signal processing
-
MRI pulse sequences (basics | abbreviations | parameters)
- T1 weighted image
- T2 weighted image
- proton density weighted image
- chemical exchange saturation transfer
- CSF flow studies
- diffusion weighted imaging (DWI)
- echo-planar pulse sequences
- fat-suppressed imaging sequences
- gradient echo sequences
- inversion recovery sequences
- metal artifact reduction sequence (MARS)
-
perfusion-weighted imaging
- techniques
- derived values
- saturation recovery sequences
- spin echo sequences
- spiral pulse sequences
- susceptibility-weighted imaging (SWI)
- T1 rho
- MR angiography (and venography)
-
MR spectroscopy (MRS)
- 2-hydroxyglutarate peak: resonates at 2.25 ppm
- alanine peak: resonates at 1.48 ppm
- choline peak: resonates at 3.2 ppm
- citrate peak: resonates at 2.6 ppm
- creatine peak: resonates at 3.0 ppm
- functional MRI (fMRI)
- gamma-aminobutyric acid (GABA) peak: resonates at 2.2-2.4 ppm
- glutamine-glutamate peak: resonates at 2.2-2.4 ppm
- Hunter's angle
- lactate peak: resonates at 1.3 ppm
- lipids peak: resonates at 1.3 ppm
- myoinositol peak: resonates at 3.5 ppm
- MR fingerprinting
- N-acetylaspartate (NAA) peak: resonates at 2.0 ppm
- propylene glycol peak: resonates at 1.13 ppm
-
MRI artifacts
- MRI hardware and room shielding
- MRI software
- patient and physiologic motion
- tissue heterogeneity and foreign bodies
- Fourier transform and Nyquist sampling theorem
- MRI contrast agents
- MRI safety
-
ultrasound
- ultrasound physics
-
transducers
- linear array
- convex array
- phased array
- frame averaging (frame persistence)
- ultrasound image resolution
- imaging modes and display
- pulse-echo imaging
- real-time imaging
-
Doppler imaging
- Doppler effect
- color Doppler
- power Doppler
- B flow
- color box
- Doppler angle
- pulse repetition frequency and scale
- wall filter
- color write priority
- packet size (dwell time)
- peak systolic velocity
- end-diastolic velocity
- resistive index
- pulsatility index
- Reynolds number
- panoramic imaging
- compound imaging
- harmonic imaging
- elastography
- scanning modes
- 2D ultrasound
- 3D ultrasound
- 4D ultrasound
- M-mode
-
ultrasound artifacts
- acoustic shadowing
- acoustic enhancement
- beam width artifact
- reverberation artifact
- ring down artifact
- mirror image artifact
- side lobe artifact
- speckle artifact
- speed displacement artifact
- refraction artifact
- multipath artifact
- anisotropy
- electrical interference artifact
- hardware-related artifacts
- Doppler artifacts
- aliasing
- tissue vibration
- spectral broadening
- blooming
- motion (flash) artifact
- twinkling artifact
- acoustic streaming
- biological effects of ultrasound
- history of ultrasound
-
nuclear medicine
- nuclear medicine physics
- detectors
- tissue to background ratio
-
radiopharmaceuticals
- fundamentals of radiopharmaceuticals
- radiopharmaceutical labeling
- radiopharmaceutical production
- nuclear reactor produced radionuclides
- cyclotron produced radionuclides
- radiation detection
- dosimetry
- specific agents
- carbon-11
- chromium-51
- fluorine agents
- gallium agents
- Ga-67 citrate
- Ga-68
- iodine agents
-
I-123
- I-123 iodide
- I-123 ioflupane (DaTSCAN)
- I-123 ortho-iodohippurate
- I-131
-
MIBG scans
- I-123 MIBG
- I-131 MIBG
-
I-123
- indium agents
- In-111 Octreoscan
- In-111 OncoScint
- In-111 Prostascint
- In-111 oxine labeled WBC
- krypton-81m
- nitrogen-13
- oxygen-15
- phosphorus-32
- selenium-75
-
technetium agents
- Tc-99m DMSA
- Tc-99m DTPA
- Tc-99m DTPA aerosol
- Tc-99m HMPAO
- Tc-99m HMPAO labeled WBC
- Tc-99m MAA
- Tc-99m MAG3
- Tc-99m MDP
- Tc-99m mercaptoacetyltriglycine
- Tc-99m pertechnetate
- Tc-99m labeled RBC
- Tc-99m sestamibi
- Tc-99m sulfur colloid
- Tc-99m sulfur colloid (oral)
- thallium-201 chloride
- xenon agents
- in vivo therapeutic agents
- pharmaceuticals used in nuclear medicine
-
emerging methods in medical imaging
- radiography
- phase-contrast imaging
- CT
- deep-learning reconstruction
- photon counting CT
- virtual non-contrast imaging
- ultrasound
- magnetomotive ultrasound (MMUS)
- superb microvascular imaging
- ultrafast Doppler imaging
- ultrasound localization microscopy
- MRI
- nuclear medicine
- total body PET system
- immuno-PET
- miscellaneous
- radiography