Dual-energy CT (clinical applications)

Changed by Andrew Murphy, 14 Feb 2019

Updates to Article Attributes

Body was changed:

Dual-energy CT is becoming increasingly more common in clinical practice due to the rapid rise in computer technology and expanding literature exhibiting vast advantages over conventional single energy CT. 

Virtual non-contrastClinical applications

There is a potential to eliminate the need for pre-contrast imaging, using complex subtraction algorithms based on the two datasets known as virtual unenhanced imaging 1.

The acquired images are automatically reconstructed to three separate image sets: 80 kVpclinical practice, 140 kVpadaptation and mixed 80:140 kVp image with the weighting factortechniques of 0.4 (40% image information from the 80 kVp image and 60% information from the 140 kVp image). The weighting factors can be adjusted, to achieve the desired effect. The 80 kVp images have higher contrast attenuation but intrinsically lower signal to noise ratio and smaller field of view. The 140 kVp images have less contrast attenuation but a better signal to noise ratio and a full field of view.

Material decomposition can be further performed on a dedicated workstation to create different image setting including iodine map (virtual contrast image), iodine subtraction (virtual non-contrast image) and bone mask (bone and calcium subtraction). Perfusion and blood volume colour coded images can be created by using a grey or colour scale. These perfusion and blood volume images reflect the lung perfusion at a single time point. Therefore, they are surrogate perfusion images.

Vascular

High kVp CT scans have a lower contrast than that of lower kVp due to the K-edge of iodine, giving the lower energy of the dual energy scan an advantage over conventional CT. In fact, the attenuation values of large vessels enhanced with iodine are 70% higher at 80 kVp than at 140 kVp 7.

It isn't unreasonable to assume that you can use single energy scanners at a lower kVp in arterial studies, yet isolated lower kVp scans have a greater noise, while dual-energy CT can be fused with the higher energy scans to compensate. 

As mentioned above it is possible to create broken into individual articles:

  • -<p><strong>Dual-energy</strong><strong> CT </strong>is becoming increasingly more common in clinical practice due to the rapid rise in computer technology and expanding literature exhibiting vast advantages over conventional single energy CT. </p><h4>Virtual non-contrast</h4><p>There is a potential to eliminate the need for pre-contrast imaging, using complex subtraction algorithms based on the two datasets known as virtual unenhanced imaging <sup>1</sup>.</p><p>The acquired images are automatically reconstructed to three separate image sets: 80 kVp, 140 kVp and mixed 80:140 kVp image with the weighting factor of 0.4 (40% image information from the 80 kVp image and 60% information from the 140 kVp image). The weighting factors can be adjusted, to achieve the desired effect. The 80 kVp images have higher contrast attenuation but intrinsically lower signal to noise ratio and smaller field of view. The 140 kVp images have less contrast attenuation but a better signal to noise ratio and a full field of view.</p><p>Material decomposition can be further performed on a dedicated workstation to create different image setting including iodine map (virtual contrast image), iodine subtraction (virtual non-contrast image) and bone mask (bone and calcium subtraction). Perfusion and blood volume colour coded images can be created by using a grey or colour scale. These perfusion and blood volume images reflect the lung perfusion at a single time point. Therefore, they are surrogate perfusion images.</p><h4>Vascular</h4><p>High kVp CT scans have a lower contrast than that of lower kVp due to the K-edge of iodine, giving the lower energy of the dual energy scan an advantage over conventional CT. In fact, the attenuation values of large vessels enhanced with iodine are 70% higher at 80 kVp than at 140 kVp <sup>7</sup>.</p><p>It isn't unreasonable to assume that you can use single energy scanners at a lower kVp in arterial studies, yet isolated lower kVp scans have a greater noise, while dual-energy CT can be fused with the higher energy scans to compensate. </p><p>As mentioned above it is possible to create virtual non-contrast images to delineate dense hematoma from active extravasation of contrast <sup>13</sup>. </p><p>Bone subtraction techniques in dual-energy CT utilise the same dual attenuation method to remove bony structures more accurately at a set threshold, rather than manual selection in post-processing, this has exceptional advantages when assessing vessels that lie close to skeletal structures <sup>7</sup>. </p><p>Dual-energy aortogram in surveillance of endovascular aneurysm repair improves detection of endoleaks in fewer acquisitions<sup> 7</sup>; low kVp scanning can detect subtle leaks, while the virtual non-contrast images replace the unenhanced scan allowing a substantial reduction in radiation burden in patients that require life-long checkups <sup>14,15</sup>. </p><h4>Suboptimal contrast injection</h4><p>In the event of suboptimal contrast injection and or timing, the lower energy set (closer to the K-edge of iodine) can be favoured to improve the contrast resolution in various studies from pulmonary angiograms to aortograms <sup>8</sup>.</p><h4>Contrast sparing</h4><p>Using lower energy data sets are proven to increase the arterial enhancement of pulmonary angiograms and other contrast studies due to the K-edge of iodine being closer to the lower energy used in a dual energy scanner <sup>9-11</sup>.</p><h4>Pulmonary angiography</h4><p>The 80 kVp image has the potential to improve subsegmental pulmonary artery perfusion and distal pulmonary embolus detection <sup>8</sup>.</p><p>Perfusion blood volume maps can be used to identify the segmental or subsegmental areas of lung affected by a pulmonary embolus. It is important to note that atelectasis, cardiac motion and streak artefact can all cause perfusion defects <sup>9</sup>.</p><h4>Renal stone composition</h4><p>Renal calculi are composed of different substances such as uric acid, calcium phosphate, calcium oxalate, cystine, and brushite. Clinical management varies by stone type. Dual-energy CT uses advanced post-processing techniques to determine the composition of the calculi accurately, allowing for precise treatment pathways, based on a non-invasive diagnostic test <sup>4,5,16</sup>.</p><p>For example, if a stone is predominantly made up of uric acid, patients can undergo standard urinary alkalinization rather than have an interventional procedure <sup>17</sup>. </p><h4>Bone bruising</h4><p>The bone mineral can be retrospectively subtracted revealing areas of increased fluid attenuation, providing a notable step forward in the detection of occult fractures <sup>1-5</sup>.</p><h4>Acute bowel ischaemia</h4><p>The addition of iodine maps and 40-keV monoenergetic images to standard single energy CT images was found to increase reader confidence and accuracy in diagnosing acute bowel ischaemia. Ischaemic segments have been found to have lower densities and iodine concentrations compared to non-ischaemic segments <sup>18</sup>.</p>
  • +<p><strong>Dual-energy CT </strong>is becoming increasingly more common in clinical practice due to the rapid rise in computer technology and expanding literature exhibiting vast advantages over conventional single energy CT. </p><h4>Clinical applications</h4><p>The clinical practice, adaptation and techniques of dual energy CT is broken into individual articles:</p><ul>
  • +<li>
  • +<a href="/articles/virtual-non-contrast-imaging">virtual non-contrast imaging</a> </li>
  • +<li><a href="/articles/abdominal-imaging-dual-energy-ct">abdominal</a></li>
  • +<li>
  • +<a href="/articles/vascular-imaging-dual-energy-ct">vascular</a> </li>
  • +<li><a href="/articles/urinary-system-imaging-dual-energy-ct">urinary system</a></li>
  • +<li>musculoskeletal</li>
  • +</ul>

References changed:

  • 1. Coursey CA, Nelson RC, Boll DT et-al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging?. Radiographics. 2010;30 (4): 1037-55. <a href="http://dx.doi.org/10.1148/rg.304095175">doi:10.1148/rg.304095175</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20631367">Pubmed citation</a><span class="auto"></span>
  • 2. Reagan AC, Mallinson PI, O'Connell T et-al. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences. J Comput Assist Tomogr. 2014;38 (5): 802-5. <a href="http://dx.doi.org/10.1097/RCT.0000000000000107">doi:10.1097/RCT.0000000000000107</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/24834889">Pubmed citation</a><span class="auto"></span>
  • 3. Pache G, Krauss B, Strohm P et-al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions-feasibility study. Radiology. 2010;256 (2): 617-24. <a href="http://dx.doi.org/10.1148/radiol.10091230">doi:10.1148/radiol.10091230</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20551186">Pubmed citation</a><span class="auto"></span>
  • 4. Guggenberger R, Gnannt R, Hodler J et-al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging. Radiology. 2012;264 (1): 164-73. <a href="http://dx.doi.org/10.1148/radiol.12112217">doi:10.1148/radiol.12112217</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/22570505">Pubmed citation</a><span class="auto"></span>
  • 5. Stolzmann P, Scheffel H, Rentsch K et-al. Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol. Res. 2008;36 (3-4): 133-8. <a href="http://dx.doi.org/10.1007/s00240-008-0140-x">doi:10.1007/s00240-008-0140-x</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18545993">Pubmed citation</a><span class="auto"></span>
  • 6. Hidas G, Eliahou R, Duvdevani M et-al. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology. 2010;257 (2): 394-401. <a href="http://dx.doi.org/10.1148/radiol.10100249">doi:10.1148/radiol.10100249</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20807846">Pubmed citation</a><span class="auto"></span>
  • 7. Vlahos I, Godoy MC, Naidich DP. Dual-energy computed tomography imaging of the aorta. J Thorac Imaging. 2010;25 (4): 289-300. <a href="http://dx.doi.org/10.1097/RTI.0b013e3181dc2b4c">doi:10.1097/RTI.0b013e3181dc2b4c</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/21042067">Pubmed citation</a><div class="ref_v2"></div>
  • 8. Godoy MC, Heller SL, Naidich DP et-al. Dual-energy MDCT: comparison of pulmonary artery enhancement on dedicated CT pulmonary angiography, routine and low contrast volume studies. Eur J Radiol. 2011;79 (2): e11-7. <a href="http://dx.doi.org/10.1016/j.ejrad.2009.12.030">doi:10.1016/j.ejrad.2009.12.030</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20149952">Pubmed citation</a><div class="ref_v2"></div>
  • 9. Lu GM, Wu SY, Yeh BM et-al. Dual-energy computed tomography in pulmonary embolism. Br J Radiol. 2010;83 (992): 707-18. <a href="http://dx.doi.org/10.1259/bjr/16337436">doi:10.1259/bjr/16337436</a> - <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473509">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20551257">Pubmed citation</a><div class="ref_v2"></div>
  • 10. Ascenti G, Mazziotti S, Lamberto S, Bottari A, Caloggero S, Racchiusa S, Mileto A, Scribano E. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. Am J Roentgenol. 2011 Jun;196(6):1408-14. doi: 10.2214/AJR.10.4505.
  • 11. Rutherford RA, Pullan BR, Isherwood I. Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology. 1976;11 (1): 15-21. <a href="http://www.ncbi.nlm.nih.gov/pubmed/934468">Pubmed citation</a><span class="auto"></span>
  • 12. Machida H, Tanaka I, Fukui R et-al. Dual-Energy Spectral CT: Various Clinical Vascular Applications. Radiographics. 2016;36 (4): 1215-32. <a href="http://dx.doi.org/10.1148/rg.2016150185">doi:10.1148/rg.2016150185</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/27399244">Pubmed citation</a><span class="auto"></span>
  • 13. Aran S, Daftari Besheli L, Besheli LD et-al. Applications of dual-energy CT in emergency radiology. AJR Am J Roentgenol. 2014;202 (4): W314-24. <a href="http://dx.doi.org/10.2214/AJR.13.11682">doi:10.2214/AJR.13.11682</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/24660729">Pubmed citation</a><span class="auto"></span>
  • 14. Boll DT, Merkle EM, Paulson EK et-al. Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology. 2008;247 (3): 687-95. <a href="http://dx.doi.org/10.1148/radiol.2473070849">doi:10.1148/radiol.2473070849</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18424688">Pubmed citation</a><span class="auto"></span>
  • 15. Aran S, Daftari Besheli L, Besheli LD et-al. Applications of dual-energy CT in emergency radiology. AJR Am J Roentgenol. 2014;202 (4): W314-24. <a href="http://dx.doi.org/10.2214/AJR.13.11682">doi:10.2214/AJR.13.11682</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/24660729">Pubmed citation</a><span class="auto"></span>
  • 16. Leng S, Huang A, Cardona JM et-al. Dual-Energy CT for Quantification of Urinary Stone Composition in Mixed Stones: A Phantom Study. AJR Am J Roentgenol. 2016; 1-9. <a href="http://dx.doi.org/10.2214/AJR.15.15692">doi:10.2214/AJR.15.15692</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/27224260">Pubmed citation</a><span class="auto"></span>
  • 17. McAteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. Semin. Nephrol. 2008;28 (2): 200-13. <a href="http://dx.doi.org/10.1016/j.semnephrol.2008.01.003">doi:10.1016/j.semnephrol.2008.01.003</a> - <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900184">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18359401">Pubmed citation</a><span class="auto"></span>
  • 18. Lourenco PDM, Rawski R, Mohammed MF, Khosa F, Nicolaou S, McLaughlin P. Dual-Energy CT Iodine Mapping and 40-keV Monoenergetic Applications in the Diagnosis of Acute Bowel Ischemia. (2018) AJR. American journal of roentgenology. 211 (3): 564-570. <a href="https://doi.org/10.2214/AJR.18.19554">doi:10.2214/AJR.18.19554</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29927328">Pubmed</a> <span class="ref_v4"></span>

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.