Osteoporosis

Changed by Jeremy Jones, 26 Sep 2021

Updates to Article Attributes

Body was changed:

Osteoporosis is a metabolic bone disease characterized by decreased bone mass and skeletal fragility.

The World Health Organisation (WHO) operationally defines osteoporosis as a bone mineral density T-score less than -2.5 SD (more than 2.5 standard deviations under the young-adult mean), which is measured by dual-energy x-ray absorptiometry (DEXA), in postmenopausal women and men at least 50 years old. The reference standard site of bone mineral density analysis is the femoral neck, but other sites such as lumbar spine can be used. A clinical diagnosis of osteoporosis may also be established without bone mineral density measurement by the presence of a fragility fracture, particularly at typical sites (spine, hip, pelvis, wrist, humerus, or rib).

Epidemiology

Risk factors

The WHO diagnostic criterion for osteoporosis is not sufficient to identify patients who are at high risk of fracture. The following risk factors, in addition to femoral neck bone mineral density, are used in FRAX (Fracture Risk Assessment Tool), which calculates a 10-year probability of major osteoporotic fracture (hip, clinical spine, humerus, or wrist fracture) and of hip fracture 11:

  • sex (females have higher risk)
  • age (older adults have higher risk)
  • body mass index (lower body mass carries higher risk)
  • prior fragility fracture
  • parental history of hip fracture
  • current tobacco smoking
  • daily alcohol consumption of at least 3 units
  • ever long-term use of oral glucocorticoids (more than 3 months at a dose equivalent to as least 5 mg daily prednisolone)
  • rheumatoid arthritis
  • other causes of secondary osteoporosis, including

Clinical presentation

Osteoporosis per se is asymptomatic and is most often diagnosed when individuals are evaluated on the basis of risk factors or following presentation with fragility fracture.

Pathology

Osteoporosis is essentially decreased bony tissue per unit volume of bone. There is no microstructural and biochemical change as occurs in osteomalacia or rickets. Hence the mineral-to-osteoid ratio is normal (cf. osteomalacia in which the mineral-to-osteoid ratio is decreased).

Osteoporosis can be localised or diffuse and be divided into:

There is a different list of secondary causes for juvenile osteoporosis with some overlap with adult causes. 

Radiographic features

Decreased bone density can be appreciated by decreased cortical thickness and loss of bony trabeculae in the early stages in radiography. Bones like the vertebra, long bones (proximal femur), calcaneum and tubular bones are usually looked at for evidence of osteoporosis. Nevertheless, dual energy x-ray absorptiometry (DEXA) is the gold standard of diagnosing osteoporosis 10

Plain radiograph
  • not a sensitive modality, as more than 30-50% bone loss is required to appreciate decreased bone density on a radiograph
  • vertebral osteoporosis manifests as
  • loss of trabeculae in proximal femur area, which is explained by Singh's index (and can also be seen in the calcaneum)
  • in tubular bones (especially metacarpals), there will be thinning of the cortex
    • cortical thickness <25% of the whole thickness of metacarpal signifies osteoporosis (normally 25-33%)
Bone mineral density measurement

Bone mineral density (BMD) measurement is the method of estimation of calcium hydroxyapatite. Multiple x-ray based, gamma-ray based and ultrasonic methods are available:

Based on DEXA BMD can fall into three categories 10:

  • normal (low risk of fracture)
  • osteopenic (medium risk)
  • osteoporotic (high risk)
CT

Quantitative CT can measure bone mineralization and BMD, which is usually done in the lumbar spine 10

Ultrasound

Quantitative ultrasound of the calcaneal bone quality has recently emerged as a cost-efficient screening tool for osteoporosis 10

MRI

Bone marrow signal takes on a heterogeneous appearance with rounded focal fatty lesions replacing normal marrow with coalescence often occurring 5:

  • T1: heterogeneously hyperintense
  • T2: variable signal

Osteoporotic wedge compression fractures will alter in signal characteristics depending on age.

Treatment and prognosis

As osteoporosis decreases bone strength, patients are at an increased risk of fracture, often with minimal trauma, and commonly at the pelvis, hip and wrist.

Oral bisphosphonates are the most commonly prescribed medications and are effective in reducing the risk of further osteoporotic fracture. There are a range of other medications that can also be used, including intravenous bisphosphonates, selective oestrogen receptor modulators (e.g. raloxifene), denosumab, strontium ranelate, calcitonin, and parathyroid hormone-based treatments (e.g. teriparatide) 8.

Complications

Bisphosphonates and denosumab have been associated with rare, but serious, side effects including bisphosphonate-related atypical femoral fractures and bisphosphonate-related osteonecrosis of the jaw

  • -<a href="/articles/osteoporotic-spinal-compression-fracture">compression fractures</a> and <a href="/articles/vertebra-plana">vertebra plan</a><a href="/articles/vertebra-plana">a</a> (<a href="/articles/genant-classification-of-vertebral-faractures">Genant classification of vertebral fractures</a>)</li>
  • +<a href="/articles/spinal-compression-fracture">compression fractures</a> and <a href="/articles/vertebra-plana">vertebra plan</a><a href="/articles/vertebra-plana">a</a> (<a href="/articles/genant-classification-of-vertebral-faractures">Genant classification of vertebral fractures</a>)</li>
  • -<a href="/articles/dual-energy-x-ray-absorptiometry-1">dual energy x-ray absorptiometry (</a><a href="/articles/dexa">DEXA</a><a href="/articles/dual-energy-x-ray-absorptiometry">)</a><ul><li>most commonly-used and most reliable</li></ul>
  • +<a href="/articles/dual-energy-x-ray-absorptiometry-1">dual energy x-ray absorptiometry (</a><a href="/articles/dexa">DEXA</a><a href="/articles/dual-energy-x-ray-absorptiometry-1">)</a><ul><li>most commonly-used and most reliable</li></ul>

References changed:

  • 1. David Sutton. Textbook of Radiology and Imaging (Two Vol. Set). (2002) ISBN: 0443071098 - <a href="http://books.google.com/books?vid=ISBN0443071098">Google Books</a>
  • 2. Anil G, Guglielmi G, Peh W. Radiology of Osteoporosis. Radiol Clin North Am. 2010;48(3):497-518. <a href="https://doi.org/10.1016/j.rcl.2010.02.016">doi:10.1016/j.rcl.2010.02.016</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20609888">Pubmed</a>
  • 3. Hodsman P. Diagnosis and Management of Involutional Osteoporosis. Can Fam Physician. 1979;25:467-72. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2383039">PMC2383039</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/21297728">Pubmed</a>
  • 4. Toumba M & Skordis N. Osteoporosis Syndrome in Thalassaemia Major: An Overview. J Osteoporos. 2010;2010:537673. <a href="https://doi.org/10.4061/2010/537673">doi:10.4061/2010/537673</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20976089">Pubmed</a>
  • 5. Hanrahan C & Shah L. MRI of Spinal Bone Marrow: Part 2, T1-Weighted Imaging-Based Differential Diagnosis. AJR Am J Roentgenol. 2011;197(6):1309-21. <a href="https://doi.org/10.2214/AJR.11.7420">doi:10.2214/AJR.11.7420</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/22109284">Pubmed</a>
  • 6. Wolfgang Dähnert. Radiology Review Manual. (2011) ISBN: 9781609139438 - <a href="http://books.google.com/books?vid=ISBN9781609139438">Google Books</a>
  • 7. Andreu-Arasa V, Chapman M, Kuno H, Fujita A, Sakai O. Craniofacial Manifestations of Systemic Disorders: CT and MR Imaging Findings and Imaging Approach. Radiographics. 2018;38(3):890-911. <a href="https://doi.org/10.1148/rg.2018170145">doi:10.1148/rg.2018170145</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29624481">Pubmed</a>
  • 8. Tu K, Lie J, Wan C et al. Osteoporosis: A Review of Treatment Options. P T. 2018;43(2):92-104. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768298">PMC5768298</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29386866">Pubmed</a>
  • 9. Bianchi M, Mazzanti A, Galbiati E et al. Bone Mineral Density and Bone Metabolism in Duchenne Muscular Dystrophy. Osteoporos Int. 2003;14(9):761-7. <a href="https://doi.org/10.1007/s00198-003-1443-y">doi:10.1007/s00198-003-1443-y</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/12897980">Pubmed</a>
  • 10. Palmer W, Bancroft L, Bonar F et al. Glossary of Terms for Musculoskeletal Radiology. Skeletal Radiol. 2020;49(Suppl 1):1-33. <a href="https://doi.org/10.1007/s00256-020-03465-1">doi:10.1007/s00256-020-03465-1</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/32488336">Pubmed</a>
  • 11. Kanis J, Oden A, Johansson H, Borgström F, Ström O, McCloskey E. FRAX and Its Applications to Clinical Practice. Bone. 2009;44(5):734-43. <a href="https://doi.org/10.1016/j.bone.2009.01.373">doi:10.1016/j.bone.2009.01.373</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/19195497">Pubmed</a>
  • 1. Sutton D. Textbook of radiology and imaging. Churchill Livingstone. ISBN:0443071098. <a href="http://books.google.com/books?vid=ISBN0443071098">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/0443071098">Find it at Amazon</a><span class="ref_v3"></span>
  • 2. Anil G, Guglielmi G, Peh WC. Radiology of osteoporosis. Radiol. Clin. North Am. 2010;48 (3): 497-518. <a href="http://dx.doi.org/10.1016/j.rcl.2010.02.016">doi:10.1016/j.rcl.2010.02.016</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20609888">Pubmed citation</a><span class="auto"></span>
  • 3. Hodsman PM. Diagnosis and management of involutional osteoporosis. Can Fam Physician. 2013;25: 467-72. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2383039">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/21297728">Pubmed citation</a><span class="auto"></span>
  • 4. Toumba M, Skordis N. Osteoporosis syndrome in thalassaemia major: an overview. Journal of osteoporosis. 2010: 537673. <a href="https://doi.org/10.4061/2010/537673">doi:10.4061/2010/537673</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20976089">Pubmed</a> <span class="ref_v4"></span>
  • 5. Christopher J. Hanrahan, Lubdha M. Shah. MRI of Spinal Bone Marrow: Part 2, T1-Weighted Imaging-Based Differential Diagnosis. (2012) American Journal of Roentgenology. 197 (6): 1309-21. <a href="https://doi.org/10.2214/AJR.11.7420">doi:10.2214/AJR.11.7420</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/22109284">Pubmed</a> <span class="ref_v4"></span>
  • 6. Wolfgang D. Radiology Review Manual. (2011) <a href="https://books.google.co.uk/books?vid=ISBN9781609139438">ISBN: 9781609139438</a><span class="ref_v4"></span>
  • 7. Andreu-Arasa VC, Chapman MN, Kuno H, et al. Craniofacial Manifestations of Systemic Disorders: CT and MR Imaging Findings and Imaging Approach. (2018) Radiographics : a review publication of the Radiological Society of North America, Inc. 38 (3): 890-911. <a href="https://doi.org/10.1148/rg.2018170145">doi:10.1148/rg.2018170145</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29624481">Pubmed</a> <span class="ref_v4"></span>
  • 8. Tu KN, Lie JD, Wan CKV, et al. Osteoporosis: A Review of Treatment Options (2018), P T. 2018 Feb; 43(2): 92–104. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768298/">Pubmed</a><span class="ref_v4"></span>
  • 9. Bianchi ML, Mazzanti A, Galbiati E, et al. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. (2003) Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 14 (9): 761-7. <a href="https://doi.org/10.1007/s00198-003-1443-y">doi:10.1007/s00198-003-1443-y</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/12897980">Pubmed</a> <span class="ref_v4"></span>
  • 10. Palmer W, Bancroft L, Bonar F, et al. Pfirrmann. Glossary of terms for musculoskeletal radiology. (2020) Skeletal Radiology. <a href="https://doi.org/10.1007/s00256-020-03465-1">doi:10.1007/s00256-020-03465-1</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/32488336">Pubmed</a> <span class="ref_v4"></span>
  • 11. Kanis JA, Oden A, Johansson H, Borgström F, Ström O, McCloskey E. FRAX and its applications to clinical practice. (2009) Bone. 44 (5): 734-43. <a href="https://doi.org/10.1016/j.bone.2009.01.373">doi:10.1016/j.bone.2009.01.373</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/19195497">Pubmed</a> <span class="ref_v4"></span>

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.