Haemorrhagic transformation of ischaemic stroke

Last revised by Lucrezia Bristot on 4 Mar 2024

Haemorrhagic transformation is a complication of cerebral ischaemic stroke and can significantly worsen prognosis.

The term haemorrhagic transformation is somewhat variably used and collectively refers to two different processes, which have different incidence, appearance and prognostic implications. These are:

  1. haemorrhagic infarction (petechial haemorrhages)

  2. parenchymal haematoma

As such when using the term "haemorrhagic transformation" one should try and be explicit as to which of these two is occurring. 

The rates of haemorrhagic transformation of ischaemic strokes have been variably reported, but generally over half of all cerebral infarcts at some stage develop some haemorrhagic component. The majority of haemorrhagic transformation after stroke (89%) is petechial haemorrhages; a minority (11%) haematomas 5,6.

The patient group affected is a subset of those affected by cerebral infarction. Therefore, patients affected by haemorrhagic transformation are those more likely to be affected by ischaemic strokes, such as the elderly and those with cerebrovascular risk factors. Beyond this, certain factors increase the risk of haemorrhagic transformation of stroke, including 11:

  • older age

  • larger stroke size

  • cardioembolic stroke aetiology 1

  • anticoagulant use

  • fever

  • hyperglycaemia

  • low serum cholesterol

  • elevated systolic blood pressure in the acute setting

  • thrombolytic therapy or other recanalisation

Although haemorrhagic transformation can occur spontaneously, it is more frequently encountered in patients who receive anticoagulant therapy and even more frequent in those undergoing thrombolytic therapy 1,2,4. The overall rate of spontaneous haemorrhagic transformation (with haematoma) has been reported to be as high as ~5% 5. The incidence of symptomatic haemorrhagic transformation is, however, much lower, between 0.6 and 3% in untreated patients and up to 6% of patients treated with IV tPA 2,4,6.

After IV tPA, predictors of haemorrhagic transformation include 6:

  • severe strokes (NIHSS >14)

  • proximal middle cerebral artery occlusion

  • hypodensity (CT) affecting >1/3 of the middle cerebral artery territory

  • delayed recanalisation (>6 hours after stroke onset)

  • absence of collateral flow

While various criteria have been used for defining whether a haemorrhage is symptomatic, only parenchymal haematomas have been consistently associated with neurological deterioration and worsened long-term outcomes 10.  Many instances of haemorrhagic transformation, including most petechial haemorrhage, is not symptomatic. 

Significant haemorrhagic transformation of a cerebral infarct usually manifests in a rapid and often profound deterioration in clinical state.

In untreated patients, haemorrhagic transformation rarely occurs in the first 6 hours. It is usually seen in the first few days, the majority within 4 days of infarction. In patients who have been treated acutely with thrombolysis or thrombectomy, haemorrhage occurs in the vast majority within 24 hours of the start of treatment 3.

Petechial haemorrhagic transformation has traditionally been referred to by pathologists as "red softening" in contrast to the more common bland or anaemic infarct.

It is believed that haemorrhagic transformation occurs as a result of preserved collateral perfusion (from adjacent vessels/territories) or from reperfusion of infarcted tissues which have weakened vessels (i.e. from extravasation or diapedesis) 1. The former explains why haemorrhagic transformation is seen in patients with permanently occluded vessels. The latter accounts for the increased incidence in patients receiving therapies designed to increase reperfusion rates.

A commonly used classification system was developed for the European Cooperative Acute Stroke Study (ECASS II), which divides haemorrhagic transformation into four subtypes 9:

  1. haemorrhagic infarction type 1 (HI1)

    • petechial haemorrhages at the infarct margins

  2. haemorrhagic infarction type 2 (HI2)

    • petechial haemorrhages throughout the infarct

    • no mass-effect attributable to the haemorrhages

  3. parenchymal haematoma type 1 (PH1)

    • ≤30% of the infarcted area

    • minor mass effect attributable to the haematoma

  4. parenchymal haematoma type 2 (PH2)

    • >30% of infarct zone

    • substantial mass effect attributable to the haematoma

This same classification has been incorporated into the widely used Heidelberg bleeding classification 12.

The radiographic features differ for petechial haemorrhage and secondary haematoma.

Petechial haemorrhages, as the name suggests, usually appear as tiny punctate regions of haemorrhage, often not able to be individually resolved, but rather resulting in increased attenuation of the region on CT or signal loss on MRI. Although this petechial change can result in cortex appearing near-normal it should not be confused with the phenomenon of fogging seen on CT which occurs 2 to 3 weeks after infarction.

In the case of secondary haematomas, the radiographic features on both CT and MRI are merely a summation of the features of an ischaemic stroke, with superimposed cerebral haemorrhage. The amount of haemorrhage relative to the size of the infarct can vary widely, but usually, it is possible to identify significant areas of the brain which are infarcted but not haemorrhagic. This may not be the case if the haemorrhage is large and the underlying infarct small.

Petechial haemorrhage typically is more pronounced in grey matter and results in increased attenuation. This sometimes mimics normal grey matter density and contributes to the phenomenon of fogging.

By the time secondary haematomas form, the underlying infarct should be easily seen and will appear as a region of low attenuation, involving both the white matter and the overlying cortex. Haemorrhage is often patchy, scattered throughout the infarcted tissue, and usually represents only a small component of the abnormal tissue 1.

Appearances of MRI are as expected for an ischaemic stroke, demonstrating restricted diffusion on DWI/ADC sequences. Sequences susceptible to signal drop out due to blood products (especially SWI) are useful as they are more sensitive than CT to early haemorrhage and may help direct therapy (e.g. withhold thrombolytic therapy) although they are difficult to obtain in the hyperacute setting.

In the case of petechial haemorrhage, neither prognosis or treatment are usually affected. The same cannot be said for secondary haematomas, which when large can have a dramatic negative impact on survival and morbidity. In fact, in many thrombolysis trials, it is these secondary haematomas which almost offset the gains made by successful reperfusion.

  • contrast staining post-contrast administration (e.g. for endovascular clot retrieval7,8

    • follow-up CT performed 19-24 hours following intervention is the most specific way to differentiate, with persistent hyperdensity consistent with haemorrhage as contrast staining will reduce in density over time 7

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.